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Abstract 
This paper deals with the assessment of the performance of 

reconstruction methods for computed tomography, including 
Filtered Back Projection and ‘entropy-like’ methods. For each 
of these methods, the influence of errors in the measured data 
on the reconstructed image is analyzed. A small perturbation 
of the data vector induces a perturbation of the reconstructed 
object which can be computed by means of the sensitivity 
matrix. Using appropriate matrix computation techniques, 
an upper bound on the size of the reconstruction error is 
determined, as well as the pattern of noise in the sinogram 
that will result in the largest reconstruction error. Simulations 
will illustrate our analysis and demonstrate its utility in the 
interpretation of computed images and in the selection of 
reconstruction parameters. 

I. INTRODUCTION 
The reconstruction of images from measurements of 

radiation around the body of a patient have been extensively 
studied in the past decades, and many methods have been 
proposed (see [ 11 and references therein). All of these methods 
must find solutions for two major classes of problems. The 
first one arises from the fact that the relationship between the 
object to be reconstructed q3 and the physical quantity to be 
measured $J is theoretically known but usually undetermined 
in practice’. The second class of problems consists in 
reconstructing an image from noisy, blurred and under-sampled 
data. 

For several imaging techniques, such as X-ray tomography 
or SPECT, the simplest model of forward relationship 
involves the Radon transform or some of its generalizations 
(attenuated Radon transform, X-ray transform, etc.). We shall 
write symbolically “$J = RqY. This (linear) equation can 
be shown to be the integral form of the so-called transport 
equation [ 11, when no scattering is to be accounted for. In spite 
of recent progress [2], inversion of the transport equation and 
implementation of suitable regularization schemes for it remain 
open problems, even if one assumes perfect knowledge of the 
attenuation map and phase function. Nevertheless, we believe 
that the mastery of the inverse problem corresponding to its 
simplified formulation is a necessary step towards a deeper 
understanding of the problem in its full complexity. 

The purpose of the present paper is to introduce some 

‘For example, in the case of SPECT, Cp is the distribution of 
radioactivity, II, is the outgoing radiation as a function of an angular and 
position variables. The relation between these distributions involves 
effects such as the attenuation and scatter, which can not be determined 
with perfect accuracy. 

concepts from applied mathematics and to demonstrate, 
through simulations, how these concepts can provide useful 
information on the stability and fidelity of reconstruction 
processes. Before introducing a general framework for the 
regularization of Radon-type inverse problems, we shall glance 
at the standard FBP algorithm. The main reason for this is that, 
unlike heuristic methods, the FBP method allows a rigorous 
error analysis to be performed. 

11. OVERVIEW OF THE FILTERED BACK 
PROJECTION METHOD 

Among the essential features of the FBP method are its 
linearity and the fact that a certain level of resolution is 
imposed by means of the filtering operation. Recall that the 
(attenuation-free) Radon transform R is defined by2 

As pointed out notably in [3], the FBP algorithm can be derived 
from the following fundamental relationship: 

(R*g) * 4 = R*(g * mq, 
where R* denotes the adjoint of R, * is the standard 
2-dimensional convolution, * is the radial convolution 
and g z g(8,p) is some smoothing kernel (often chosen 
independent of 8). The adjoint of R is the Back Projection 
operator. It is defined by 

Here, SI denotes the unit circle. Ignoring sampling issues, the 
FBP reconstruction is defined by 

(1) 
where $ represents the given Radon transform of the original 
object3. The FBP method therefore essentially consists in 
applying the adjoint of the Radon transform to smoothed 
projection data. 

The discrete version of Eq. (1) reads Z = B@, where f 
the discrete representation of the reconstructed object, B is the 
matrix corresponding to the application of the FBP algorithm 
and is the vector representing the noisy and sampled data. 
It follows that any perturbation Sy of the data, will induce a 
perturbation SZ = B6y of the FBP solution. 

’For symbols which are not defined in the text, the reader is referred 
to the Glossary (Section VIII). 

’In the discrete implementation of the above formula, due to the 
conflicting polar and Cartesian underlying representation involved in 
the formula, the filter must include the so-called rampfilter. 

4 5 R*(g * $J), 
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111. INVERSE PROBLEMS AND RECONSTRUCTION 
PROCESSES 

Suppose we are interested in an object & (such as an image 
or a sequence of images), but we only have access to a sampling 
90 of a transformation $0 of this object: 

L(0) + L(') 4 Rm 

40 * $0 =WO - yo = W O .  
(2) 

Here, L ( O )  and L(') denote the (infinite-dimensional) functional 
spaces in which the object of interest and its image by the 
transformation R are assumed to lie, respectively, and S is the 
sampling operator. Equation (2) is referred to as theforward 
relationship. In image reconstruction, the space L ( O )  is often 
chosen as the space of square integrable functions whose 
support lie in some bounded domain. 

The problem consists in reconstructing an approximation 
of the original object, given an approximation 0 of yo. The 
difference between 0 and yo is the experimental e m r .  

For many problems of practical interest, the transformation 
R is an invertible linear operator. In general, ill-posedness 
of these problems is primarily due to the fact that the inverse 
operator R-' is not continuous, so that to small variations of 
$ E L(') may correspond very large variations of its inverse 
image R-'$. 

A reconstruction process can be regarded as a function 
which associates an object 4 to each data vector y: 

4 = 3 ( Y ) .  

For a reconstruction process to be acceptable, 7 should meet 
certain requirements. Firstly, 4 should reproduce the data to 
within the experimental error (fidelity); secondly, 4 should not 
be too sensitive to fluctuations of the data vector (stability); 
thirdly, 6 should be related to the true object in a way that 
makes it physically interpretable (legibility); finally, 4 should 
be computable in a reasonable time (computability). 

The first two requirements are always partially conflicting. 
Consequently, a compromise needs to be found. Keeping this 
in mind, it becomes clear that a reconstruction process should 
provide, together with a reconstructed object, some information 
on its fidelity and stability. Although of crucial importance, the 
last two requirements will not be addressed in this paper. All 
reconstruction methods discussed further perform reasonably 
well in terms of legibility and computability. 

Iv. REGULARIZATION SCHEME FOR COMPUTED 
TOMOGRAPHY 

In practice, reconstructing the object directly as an 
element of the functional space L ( O )  may be difficult or 
even impossible, simply because elements of L ( O )  have 
infinite dimension. The first step in the definition of a 
regularization scheme therefore consists in choosing an 
appropriate interpolation basis { ei}:=l c L ( O ) ,  allowing finite 

dimensional representation of the object. Otherwise expressed, 
the object to be reconstructed is confined to a finite dimensional 
subspace of and is represented by a vector z E W: 

n 
4 = EZ 5 C x j e j .  (3) 

We shall call & the emulation operator. The interpolation 
functions ej can be regarded as generalized pixels. The 
component vector z is constrained by the data vector as shown 
by the following relationship: 

j=l 

)p 3 L(0) + L(') + R m  

2 * 4 = & x  - $='Rf$ I--+ p = S $  

We shall write R 3 S a .  It can be represented by an (rn x n)- 
matrix. when R is the Radon transform, the entries of R are 
given by the following formula: 

It should be noted that confining the object to &?TIn may stabilize 
it, to some extent. In general, however, interpolation bases 
that are rich enough to allow a convenient representation of the 
object (in other words, interpolation bases which emulate the 
original object workspace L ( O )  well enough) do not sufficiently 
stabilize the reconstruction. 

The second step then consists in defining the component 
vector of the reconstructed object as the minimizer of a 
regularized objective function f: 

1 argmin { f(z) e(p - Rx) + cre(z) I z E ?TI"}. (4) 

In the definition of f, the first term forces the solution to fit 
the data, while the second term stabilizes it with respect to 
the data vector. In other words, e strives for fidelity, while e 
(whose negative is often called an entropy) aims at stabilizing 
the reconstruction. The regularization parameter Q controls the 
relative weight of each function. In practice, f will always be a 
convex function having a unique minimizer, so that Z in Eq. (4) 
is unambiguously defined. Naturally, the reconstructed object 
is obtained from its components via Eq. (3). 

In summary, the main issues regarding the definition of a 
regularized reconstruction process are: 

0 the choice of an appropriate interpolation basis; 

0 the definition of the regularized objective function; 

0 and the development of numerical tools allowing the 
control of both the fidelity of the reconstruction and its 
stability. 

For a general discussion on this regularization scheme, see [4], 
Section 3, for example. 

For the purposes of this article, we have chosen the standard 
gate function set as the interpolation basis, which corresponds 
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to the familiar notion of pixel. It forms an orthogonal set 
(with respect to the usual integral scalar product), and can 
easily be scaled so as to form an orthonormal basis (of Ea"). 
Examples of regularized objective functions will be given in 
the next section. A reasonable and easy to calculate fidelity 
estimator is provided by E(Y - RE). The sensitivity analysis 
can be performed by taking the (implicit) function defining the 
reconstruction process and linearizing it around the solution4, 
as is shown in the next Section. 

v. COMPUTATIONAL ISSUES 
From now on, we assume that E is the squared Euclidean 

1 
2 

norm: 

Eo(!/  - Rx) = - 11 ar - 11' - 

In the definition of ~ 2 ,  the X 0 j . S  are the components of some 
reference model of the object. In the definition of ~ 4 ,  Q 
is a positive semi-definite matrix. The functions defined 
above are often referred to as the Boltzmann-Shannon, the 
Kullback-Leibler, the Tikhonov and the generalized Tikhonov 
neg-entropies, respectively, from the names of their inventors. 

Our purpose here is not to discuss the argumentation leading 
to the choice of one particular regularizer or the other (a wide 
literature is devoted to this subject). Nor is it to discuss the 
choice of particular interpolation basis. The main objective of 
what follows is to provide numerical tools for the assessment 
of the performances of each regularizer, in terms of fidelity and 
stability. 

Recall that the reconstructed object is E2,  where 2 solves 
the following optimization problem 

(PO) min { e(g - RX) + cre(x) I x E Sm } . 
Constraints may be included in the above problem. For 
example, each component of x may be required to be 
nonnegative, reflecting the non-negativity of the object to be 
reconstructed 5 .  In general, x is constrained to lie in some 
convex set C c SZ" corresponding to the prior knowledge one 
has of the object. Notationally. this can be incorporated in (PO) 
by replacing e with 

e ( x )  i fx  E C,  
+cm otherwise. 

ecb) 

4This is of course possible provided that f possesses certain 
smoothness properties. 

'Depending on the nature of the interpolation basis, the constraint 
4 2 0 may give rise to different constraints on the component-vector z. 
However, these constraints are always convex, since they can be written 
as I E &-'Ly). where Ly) = {q5 E L(O'Iq5 2 0). 

Henceforth, we assume that both E and Q are twice 
continuously differentiable on their domain. All objective 
functions involving EO and ~i (i = 1,. . . ,4) satisfy this 
assumption. Notice however that, in general, this assumption 
does not apply to the constrained case. The reason for this is 
that, even if e is twice continuously differentiable, will not 
be so in practice. 

Recall that, for 2 to solve Roblem (PO), we must have 

V f ( Z )  = -R*VE (ar - B€) + CYVQ (2)  = 0.  (5 )  

Now, let 6y and 62 be a small perturbation of y and the 
corresponding perturbation of 2, respectively. Imposing 
Condition (5) to y + 6~ and 2 + 62 leads to the following first 
order approximation: 

62 2: S6y with S [R*HcR + aHQ]-' R*Hc. (6) 

The (m x n)-matrix S is referred to as the sensitivity matrix. 
Here, He, is the identity matrix and S becomes 

s = [R*R + OHQ] -'R*. 

Note that the sensitivity matrix for the FBP method is the 
matrix B itself (cf. Section II). From Eq. (a), various types of 
error analysis can be performed. In particular, the (spectral) 
norm of S will provide an upper bound on the size of the 
reconstruction errol.6. As a matter of fact we have, for all 69, 

and equality holds when 6y is a singular vector corresponding 
to the highest singular value ~1 of S (recall that ~1 = 11 Sll). 

Slightly more insightful is the computation of the singular 
vectors associated with the highest singular values, which we 
shall call the criticul modes of the reconstruction. They can 
be interpreted as artifact images which may have corrupted the 
reconstruction. This will be illustrated in the next section. 

Finally, on denoting Hi the Hessian matrix of ei at 2, 
we can easily see that H1 and H2 are both equal to the 
diagonal matrix whose diagonal entries are the inverses of 
the components of 2, that H3 is the identity matrix and that 
H4 = &. Note in particular that the sensitivity matrices of 
quadratic regularizers (Tikhonov and generalized Tikhonov) do 
not depend on h e  optimal solution. In these cases, sensitivity 
analysis can be performed U priori (i.e. before actually 
reconstructing the object). 

VI. NUMERICAL EXPERIMENTS 
In this section, the above considerations are illustrated by 

Systematic study of means of 2D numerical experiments. 

6Note that provided that the interpolation basis is orthonormal, the 
squared Euclidean norm of 62 coincides with the squared L2-norm of 
64: for all I$ = Ez, we have 
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regularization techniques for Radon-type inverse problems is 
deferred to ulterior publication. 

From a given test object 40, we compute samples of its 
Radon transform over a (15 x 60)-grid in the (O,p)-plane. 
Both 4,-, and the corresponding sinogram yo are shown in 
Fig. 1. In the same figure are shown (40 x 40)-reconstructions 
using Tikhonov’s and Boltzmann-Shannon’s regularizers. 

Figure 2 Graphs of p (fit) vs. a 
Shannon (right) regularizers. 

Figure 1: Top left original object; top right: corresponding sinogram; 
bottom left: “likhonov’ reconstruction, (with positivity constraint) 
for a = 0.8; bottom right: ‘Boltzmann-Shannon’ reconstruction for 
a = 0.5. 

Figures 2, 3 and 4 show the influence of the regularization 
parameter a on the fidelity and the stability for both Tikhonov 
and Boltzmann-Shannon regularizers. The fidelity is defined 
here as the number p Ily - RZII. The stability is assessed 
according to the analysis presented in Section V. For each value 
of a, 

is computed. The value of U gives the maximum amplification 
of the relative error, as shown by the following inequality: 

As expected, increasing a causes to increase and U to 
decrease. The curves displaying 0 versus /3 can be used in 
practice for the selection of the regularization parameter. 
Indeed, a may be chosen so that p is approximately equal to 
the expected norm of the noisel. 

These curves are also useful for the comparison of the 
behaviors of different regularizers in terms of the trade-off 
between stability and fidelity. For a desired p, the most eflcienf 
regularizer is the one for which U is smallest. This doesn’t 
mean that it should necessarily be selected, since other criteria 
(such as legibility and computability) must be considered. 

’Although p clearly depends on each particular data vector, The 
range of acceptable values of alpha for a given experimental setting is 
sufficiently narrow, in practice, for a value to be selected once for all. 

I I 

0.3 e 

0.2 0.4 0.6 0.8 
a 

0.2 0.4 0.6 0.8 
a 

for ‘Iikhonov (left) and Boltzmann- 

a a 

Figure 3: Graphs of U (sensitivity) vs. a for ‘Iikhonov (left) and 
Boltzmann-Shannon (right) regularizers. 

- -. - -  
-0.05. 

0.03 - 

OO 2 4 6 8 10 
e 

Figure 4: Graph of /3 vs. U for both ‘Iikhonov and Boltzmann-Shannon 
regularizers. 

In Fig. 5, we give an example of error amplification in 
a case where the problem has not been properly regularized 
(0 2: 13.8). The critical perturbation was obtained by 
computing the Singular Value Decomposition of the sensitivity 
matrix. This perturbation and the related artifact image 
correspond to the highest singular value cq (see Fig. 5). 
Perturbed reconstructions were obtained by adding critical 
and random perturbations. These perturbations were scaled 
so as to obtain a relative error of 10% in the data domain. 
This illustrates the importance of stability of reconstruction 
processes. 

Finally, Fig. 6 shows caculated values of the norm of 
the FBP sensitivity mamx for various filters and cutoff 
frequencies. This graph illustrates the well-known fact that low 
cutoff frequencies improve stability and therefore reduce the 
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Figure 5:  (a) and (b): noise free (16 x 96)-sinogram and (64 x 64)- 
reconstructed object (using “ikhonov regularizer. with a = 0.5. so 
that o U ‘13.8); (c) and (d): critical perturbation in the data domain 
and corresponding arr$zcr image; (e) and (0: critically perturbed 
sinogram and Corresponding reconstruction. (g) and (h): rMdomly 
perturbed sinogram and corresponding reconstruction. 

influence of noise. 

o~wt/ccz 0.W 

“’”& 0.6 0.6 0.7 0.1 0.0 1 
cutoff 

Figure 6: FBP stability vs. filter cutoff frequency. 

VII. CONCLUSION 
We have presented a method for assessing the performance 

of reconstruction processes for Computed Tomography. We 
have proposed criteria for estimating both the fidelity and the 
stability of methods (including FBP and methods belonging 
to the general framework outlined in Section IV). These 

criteria have been shown to be effective and computationally 
tractable. This provides quantitative information for the 
comparison of different methods and allows the informed 
selection of reconstruction parameters and techniques. In 
addition, interpretation of reconstructed images will benefit 
from quantitative information about the reconstruction error. 

VIII. GLOSSARY 
Radon transform 
Adjoint of R 
Emulator 
Sampling operator 
Object workspace 
Image of I,(”) by R 
Position variable (object domain) 
Angular and position variable (data domain) 
Unit circle 
Generic element of I,(”) 
Original object 
Reconstructed object 
Generic element of L(i) 
Image of $0 by R 
Generic element of R” 
Image of $0 by S (ideal data) 
Measured data 

Reconstruction process 
Interpolation basis 
Forward matrix: R = S72& 
Adjoint (transpose) of R 
Generic element of R* 
Regularized objective function 
Fit function 
Regularization parameter 
Regularizer 
Convex set representing physical constraints 
Minimizer of f 
Hessian of E at y - R3 
Hessian of e at f 
Sensitivity matrix 

2-dimensional convolution operator 
Radial convolution operator 
Dirac delta function 
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